Tag: 3D modeling

Solidworks Aston Martin One-77 by Romain Genistou

Solidworks Aston Martin One-77 by Romain Genistou

Sunday, February 11, 2018 | By | Add a Comment

 

Solidworks Aston Martin One-77 by Romain Genistou

Hello again, and boy has it been a long and busy several months for me.  I have had many changes as well as obstacles to overcome along with the coming of the new year and I am hoping for a bit more smoother sailing in the months to come.  So with that said, I am looking forward to getting back on track with my posts.  I hope all of you are having a wonderful new year and I also want to thank all of my dedicated readers out there for returning again and again to see what new and interesting insights there are in the world of modern technological design and entertainment.

Lately, I have completed a variety of Solidworks tutorials and I would like to share them with you.  One tutorial in particular is the Aston Martin One-77 body modeling tutorial by Romain Genistou.

I found this tutorial to be full of surprises, and it leaned towards the more complicated and challenging of car body modeling tutorials I have worked on as of yet.  While most Solidworks tutorials I have come across seem to be a step-by-step, hand-in-hand walkthrough of the complete tutorial; this tutorial made you strap on your thinking cap from time to time.  I found this true when especially working with the PDF version of this tutorial.

The creator of this tutorial, Romain Genistou, has a website named Solidworks Insight at www.solidworks-insight.com.  This website has a few wonderful introductory tutorials for the Solidworks student.  Most of the tutorials on this site are free, however, there are a couple that require you to pay in order to complete the tutorial in its entirity.

And so it comes to happen that Romain and Jan from www.learnsolidworks.com decided to meet and together they revised the tutorial in its entirity before  I had originally purchased the PDF version of this tutorial from Solidworks Insight before Romain and Jan collaborated on the LearnSolidworks.com edition, and I found that version to be incorrect in some areas of the design as well as missing important steps and information.  This was particularly noticeable in things like designing projected curves and connecting areas of the rear bumper area.  The LearnSolidworks.com tutorial is much more polished and goes into a bit more detail on certain questionable areas of the design.

There are certain areas of the newer version that need a bit more clarification, such as working with boundary and filled surfaces and the parameters which determine what is the best method to use between the two.  Also, there was not a great amount of detail on knitting surfaces in the model.  When modeling the Audi R8, there was quite an amount surface knitting involved, and the tutorial (although long), felt much more thorough and professionally complete.  I found myself referencing the R8 tutorial for a variety of areas including working with assemblies and making the construction lines for the vehicles axles and wheel placement.

The Aston Martin One-77 tutorial is now available on www.learnsolidworks.com for a price of 347 euro, but for a novice designer who is interested in vehicle body modeling, the information and instruction you receive is invaluable.

Solidworks Audi R8 Tutorial by Dan Lavoie

Solidworks Audi R8 Tutorial by Dan Lavoie

Wednesday, November 22, 2017 | By | Add a Comment


Solidworks Audi R8 Tutorial by Dan Lavoie

Well, hello again from your FAVORITE blogger!  I know, I know….I have had many a delay in posting my blogs as of late, but I have been excpetionally busy for some time now with many, many things which never seem to get accomplished and go away.  I have lately accomplished something worth blogging about, and I thought I would share it with you.  For anyone wanting to learn and practice surface modeling in Solidworks, there is a variety of tutorials available throughout the web.  Three key websites for Solidworks tutorials are: www.learnsolidworks.com, www.solidworkszen.com, and www.solidstufflearning.com.  The first two websites I mentioned have some very in-depth and advanced mechanical design tutorials.  I will go into more detail on these websites at a later time.  The last website I mentioned has amazing surface modeling tutorials available for a price.  But, hey, nothing is free in this world now, right?  In fact, things are REALLY, REALLY, REALLY, REALLY EXPENSIVE, aren’t they!!!!!  Even that piece of dirty half eaten, maggot infested, decaying, diseased chicken bone you just were caught stealing out of the garbage bin could potentially be pricey…..you just never know, do you?  Chances are something like that wouldn’t be pricey at all…..however, it could have been placed there as a marker for some member of a bloodthristy crime gang for whatever reasons, and you just took it….and interfered with their business, on their turf!  Like I said….you never know.  So, with that said, let me continue.  Where was I?  Oh yes, so right now, if you can fork out $90 for a Solidworks tutorial on this site, you can purchase a wonderful tutorial on how to model an Audi R8!  Just look at the stunning pictures I created of my Audi R8 from start to finish!  Wooooowwwwww, and who knew Solidworks could create such purrrdy pictures?  I do hope you have a LOT of time set aside to do this project if you are considering it, because it does take a bit of time to complete…..just a warning!  However, when you finally complete the project, you will feel a sense of accomplishment and you will learn quite a bit in the process, especially for people who need to have things shown over and over to them to get it through their thick heads, like me!  (Not from years of suffering fits of delerium from learning things like these projects…..no, not at all, hahahahahaaaaaaaaaaaaaaaaa! :(:):((((!%$#%$#@!!!!!

When you purchase the download, you get access to a zip file that you must unzip and then you will get a media player software access to play the included video tutorials to complete the project.  Each video runs about a minute to three minutes max.

I found the project to be very informative and I thought that it instructed me well on a variety of fundamental functions in surface modeling.  These key designer methods are as follows, but are not limited to:

  • Curves and projected curves
  • Converting Entities
  • Splitting surfaces and split lines
  • Offsetting lines and surfaces
  • The spline and relations
  • The use of vertical, horizontal, perpendicular, parallel, tangent, and other relations
  • Piercing endpoints to other lines
  • Planes and sketching on planes to create complex shapes in difficult areas
  • Extruded boss/bases, extruded cuts, revolved boss/bases, revolved cuts, lofted boss/bases, swept boss/bases
  • Boundary surfaces
  • Trimming surfaces and entities
  • Cut with surface
  • Knitting surfaces
  • Deleting faces and bodies
  • Fillets
  • Thickening surfaces
  • Combining bodies
  • Cut, copy, pasting and moving entities and bodies
  • And many more!

This was an extremely fulfilling tutorial on all fronts.  I felt it showed me and ingrained some of the essential things that any modeler needs to be introduced to surface modeling in Solidworks. If you have $90 available and you are willing to set aside some time to work on a project like this, then I would highly recommend that you try this tutorial.  Not only is there an Audi R8 tutorial available now at half the price, there is also a tutorial on creating an F16 fighter jet, a Ferrari F-430 tutorial, and a Lamborghini Gallardo tutorial available now at HALF THE PRICE!

With that said, I wish you luck.  I am going to go now and work on my next project.  YAY!

 

Revit Architecture

Revit Architecture

Saturday, February 25, 2017 | By | Add a Comment

RKO backlot main hotel views

RKO backlot main hotel views (Photo credit: Wikipedia)

Revit Architecture

Those of us who know anything about BIM or Building Information Modeling know how much of an oh-so-joyous happy dandy fun time Revit Architecture can be.  With its tendencies for the user to have to be highly accurate in the development of a structure without having the ability to adjust measurements manually, Revit can be an extremely time consuming and often excruciatingly painstaking program to design fully developed construction in.

Rendering can be a whole other monster to deal with in itself.  Any project with a significant amount of At the school where I learned my Revit skills, we have wonderful 2 core processor Dell desktops which pretty much are good for doing a percentage of the floor plan work and unless you have several hours to spare, then forget about rendering big projects.  Especially if animation or 3DS Max plug-ins are used, then you should really expect to be spending a significantly lengthy amount of time rendering your projects.

Of course, now we have cloud-based rendering with the experimental plug-in dubbed Project Neon, located on Autodesk Labs which is in the beta phases and allows for the user to render their images through their Autodesk account instead of locally through their own computers.  But rendering a project is still very time consuming and the use of your Autodesk account is not always available (at such places like certain schools).  It is because of the complexity of the program and the time it takes to create each individual aspect of the entire program that the program in its entirety is not always taken advantage of in the workplace.

Just imagine the incredible and beautifully polished 3D designs that could be showcased during potential project bids in any given circumstance if the software were to develop with simplified convenience in mind.  Nevertheless, Revit still is a remarkable program and it is improving dramatically by the year.  I hope to see the day when rooms are created and developed with much simpler methods and randomly generated components and furniture are brought into the program.  These improvements, including the ability to freely manipulate measurements would make Revit an excellent program to use regularly in the workplace.

Can we optimize Revit for interference checking?

Can we optimize Revit for interference checking?

Sunday, February 19, 2017 | By | Add a Comment

Can we optimize Revit for interference checking?

Well, people who are not related to construction industry get confused when they hear that Revit can also be used for determining clashes between models.  The reason for that is, normally Navisworks is optimized by AEC professionals for executing clash detection services.  When client companies get to know that clashes between model elements can also be figured out in Revit they are often shocked to hear that.

But the fact remains that, Revit is the most powerful software developed by Autodesk.  It can perform many functions apart from modeling which is its specialty.  For example the software, helps architects and engineers in coordinating multidiscipline models, creating sketches and for providing realistic effects to the models by rendering them.  In fact Revit coordination modeling services have become very popular among AEC professionals now days.

However, its Interference checking feature is very important for design development teams.  Interferences between architecture, structure and MEP models can be easily figured out in Revit by BIM modelers.  First of all, when all the different models are developed by a same company, it becomes very convenient for the multidiscipline design development teams to collaborate with for determining clashes.

Revit users can determine clashes between their own model elements, as well as between multidiscipline models such as between architectural and structural model.

A quite simple method is applied by Revit users to find out clashes.  When clashes are determined within the model elements of a single model, its users simply have to compare the location of various elements.  By comparing their location, engineers can easily understand whether they are colliding with each other or not.  If in case location assigned for a model element does not interfere with the location of other model element that means there are no issues between them.  But if two or more than two model elements interfere with each other’s location that means there is a problem in the design. And hence clashes can be determined easily.

The same formula is applied when it comes to determining clashes between different models.  In this case Revit users are first required to link a model into the host model.  Once the model is linked its users have to compare the locations of the elements of a host model and linked model.  This helps in figuring out whether the model elements of host and linked model are fighting for the same location or not.  If in case they are fighting for a same location that means they are interfering with each other.

In this way Revit users can figure out all the clashes and can eliminate them in time before they could become a serious problem for architects and engineers.

Solidworks And Sheet Metal Design

Solidworks And Sheet Metal Design

Wednesday, February 8, 2017 | By | Add a Comment

Solidworks And Sheet Metal Design

Solidworks has been specifically designed to help manufacturers design and create sheet metal parts.  Used primarily to close the gap between designers and sheet metal manufacturers, sheet metal design manufacturing with Solidworks helps keep prices low and hastens delivery times.  Solidworks’ user friendly interface allows engineers and designers to model completed parts, generating three dimensional models which can then be used by manufacturers to build the finished product.

One of the countless things that Solidworks enables engineers and manufacturers to do is to establish, for the purpose of each product, what type of sheet metal they will be using.  This includes factors like how thick the sheet metal is.  Engineers can then design sheet metal parts virtually and determine whether the material can indeed withstand the pressures placed upon it by the design.  Furthermore, sheet metal panels can be named and labeled so as to avoid confusion concerning how many of which panels to fabricate.  Later, this also helps in assembly as all sheet metal panels will be properly labeled as to their purpose and where they fit into the overall product design.

Solidworks software will also allow the engineer to add form radius, multiple or layered extrusions and other features after the product has been assembled in the virtual design.  This helps both the designer and the manufacturer to align perforations, tabs, and other features that need to be lined up on numerous complex sheet metal panels.

Solidworks allows the design and fabrication of very complex features, allowing both designers and fabricators to verify tolerances and clearances, ensuring that the product which the engineer has designed can actually be fabricated and, eventually, assembled.  Using this software engineers can view the design with small spaces so as to allow the software to unfold the computer model.  This allows design features to stand out, so that they will be seen clearly.  This feature is useful when the panels will be touching in the actual product but need to be seen as individual components by the fabricator in order to construct them correctly.

By far the best aspect of the Solidworks design package is that it allows manufacturers to modify the design as needed. The software will also help designers to take into account the effect the changes could have on the rest of the design.  The clear advantage of this is that design flaws and inconsistencies will be caught prior to the beginning of the manufacturing process, most likely saving you a lot of time and wasted materials.

Engineers find that they are able to move a product from conception and modeling through to a workable design more easily if they use solidworks software for sheet metal manufacturing.  If the design is clearly shown and easy to interpret, the manufacturer will be able able to construct components which will fit and perform exactly as the designer intended, leading to a more efficient production process.  Efficient production results in less material being wasted, fewer man hours, lower costs, and a higher profit margin.

Revit Families for Beginners

Revit Families for Beginners

Sunday, January 29, 2017 | By | Add a Comment

Revit Families for Beginners

Many fresh Revit technicians or architects who go through Revit training spend quite a lot of time in understanding the concepts behind developing BIM families.  Understanding the concepts and analyzing the role of Revit families in a particular project is very important.  Creating Revit content or families is vital for every BIM project, regardless of project size or complexity.

How to get there, is the question?  Let us talk about the concept and give beginners an idea of this essential part of BIM.

Revit family and content creation, is considered extremely important in the field of BIM.  Companies aim to develop families in order the maintain a seamless work flow within projects.  What are Revit families and why are they so important?

Basic Overview :
As discussed earlier, families constitute of elements with similar parameters which are the building blocks of a revit model.  Revit families can be simple or parametric in nature.  Parametric families are extremely important and sought after widely owing to its multiple advantages.  Families can be created from scratch depending on building requirements and later modified according to right project environment.

Types of Families:
Revit families can be categorized under Architectural , Structural, HVAC Electrical, Fire protection and Plumbing families.  Ceilings, doors, windows, furniture, fixtures, walls, curtain walls, etc., fall under Architectural Revit families.  Pipes, faucets, tubs, pots, toilets fall under Plumbing category while air diffusers and conduits are developed under HVAC and Electrical categories respectively.  You cannot modify or change the categories available within the Revit software but you can add types of families required.

There can be numerous variants within same family types.  These variants can have different dimensions, material specifications and parameters that differentiate each family variant from another one.  For example a kitchen faucet can have 3 variants, one can be small with a steel finish,  another can be a bit large with a porcelain finish, and one can be an oval shape with a tile finish.  Key concern is the parameter that is used and the values given to them.  The key point to note is that these four variations have the same set of parameters; however, the value of those parameters varies.  Parametric Revit families can be used within any project environment.

Changing or adding parameters is a tricky part.  All Revit modelers need to identify the difference between modifying parameters of family groups and individual families.